Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PeerJ ; 12: e17286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708356

RESUMO

Drought and salinity are the major abiotic stress factors negatively affecting the morphophysiological, biochemical, and anatomical characteristics of numerous plant species worldwide. The detrimental effects of these environmental factors can be seen in leaf and stem anatomical structures including the decrease in thickness of cell walls, palisade and spongy tissue, phloem and xylem tissue. Also, the disintegration of grana staking, and an increase in the size of mitochondria were observed under salinity and drought conditions. Drought and salt stresses can significantly decrease plant height, number of leaves and branches, leaf area, fresh and dry weight, or plant relative water content (RWC%) and concentration of photosynthetic pigments. On the other hand, stress-induced lipid peroxidation and malondialdehyde (MDA) production, electrolyte leakage (EL%), and production of reactive oxygen species (ROS) can increase under salinity and drought conditions. Antioxidant defense systems such as catalase, peroxidase, glutathione reductase, ascorbic acid, and gamma-aminobutyric acid are essential components under drought and salt stresses to protect the plant organelles from oxidative damage caused by ROS. The application of safe and eco-friendly treatments is a very important strategy to overcome the adverse effects of drought and salinity on the growth characteristics and yield of plants. It is shown that treatments with plant growth-promoting bacteria (PGPB) can improve morphoanatomical characteristics under salinity and drought stress. It is also shown that yeast extract, mannitol, proline, melatonin, silicon, chitosan, α-Tocopherols (vitamin E), and biochar alleviate the negative effects of drought and salinity stresses through the ROS scavenging resulting in the improvement of plant attributes and yield of the stressed plants. This review discusses the role of safety and eco-friendly treatments in alleviating the harmful effects of salinity and drought associated with the improvement of the anatomical, morphophysiological, and biochemical features in plants.


Assuntos
Estresse Fisiológico , Estresse Fisiológico/efeitos dos fármacos , Secas , Desenvolvimento Vegetal/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Salinidade , Plantas/metabolismo , Plantas/efeitos dos fármacos
2.
J Cell Biochem ; 125(3): e30530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349116

RESUMO

When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Proteínas do Nucleocapsídeo de Coronavírus , Células Endoteliais , Separação de Fases , Proteínas do Nucleocapsídeo
3.
Int J Biol Macromol ; 260(Pt 2): 129523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232879

RESUMO

Since the emergence of SARS-CoV in 2003, researchers worldwide have been toiling away at deciphering this virus's biological intricacies. In line with other known coronaviruses, the nucleocapsid (N) protein is an important structural component of SARS-CoV. As a result, much emphasis has been placed on characterizing this protein. Independent research conducted by a variety of laboratories has clearly demonstrated the primary function of this protein, which is to encapsidate the viral genome. Furthermore, various accounts indicate that this particular protein disrupts diverse intracellular pathways. Such observations imply its vital role in regulating the virus as well. The opening segment of this review will expound upon these distinct characteristics succinctly exhibited by the N protein. Additionally, it has been suggested that the N protein possesses diagnostic and vaccine capabilities when dealing with SARS-CoV. In light of this fact, we will be reviewing some recent headway in the use cases for N protein toward clinical purposes within this article's concluding segments. This forward movement pertains to both developments of COVID-19-oriented therapeutic targets as well as diagnostic measures. The strides made by medical researchers offer encouragement, knowing they are heading toward a brighter future combating global pandemic situations such as these.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2
4.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764293

RESUMO

Secreted phospholipases A2 are snake-venom proteins with many biological activities, notably anti-tumor activity. Phospholipases from the same snake type but different geographical locations have shown similar biochemical and biological activities with minor differences in protein sequences. Thus, the discovery of a new phospholipase A2 with unique characteristics identified in a previously studied venom could suggest the origins of these differences. Here, a new Group II secreted phospholipase A2 (Cc-PLA2-II) from the snake venom of Saudi Cerastes cerastes gasperetti was isolated and characterized. The purified enzyme had a molecular weight of 13.945 kDa and showed high specific activity on emulsified phosphatidylcholine of 1560 U/mg at pH 9.5 and 50 °C with strict calcium dependence. Interestingly, stability in extreme pH and high temperatures was observed after enzyme incubation at several pH levels and temperatures. Moreover, a significant dose-dependent cytotoxic anti-tumor effect against six human cancer cell lines was observed with concentrations of Cc-PLA2 ranging from 2.5 to 8 µM. No cytotoxic effect on normal human umbilical-vein endothelial cells was noted. These results suggest that Cc-PLA2-II potentially has angiogenic activity of besides cytotoxicity as part of its anti-tumor mechanism. This study justifies the inclusion of this enzyme in many applications for anticancer drug development.


Assuntos
Antineoplásicos , Viperidae , Animais , Humanos , Fosfolipases A2 do Grupo II , Arábia Saudita , Fosfolipases A2/farmacologia , Fosfolipases A2/química , Fosfolipases , Venenos de Víboras/farmacologia , Venenos de Víboras/química , Antineoplásicos/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37434588

RESUMO

Background: Breast cancer is one of the most common malignancies among women. Recent studies revealed that differentially methylated regions (DMRs) are implicated in regulating gene expression. The goal of this research was to determine which genes and pathways are dysregulated in breast cancer when their promoters are methylated in an abnormal way, leading to differential expression. Whole-genome bisulfite sequencing was applied to analyze DMRs for eight peripheral blood samples collected from five Saudi females diagnosed with stages I and II of breast cancer aligned with three normal females. Three of those patients and three normal samples were used to determine differentially expressed genes (DEG) using Illumina platform NovaSeq PE150. Results: Based on ontology (GO) and KEGG pathways, the analysis indicated that DMGs and DEG are closely related to associated processes, such as ubiquitin-protein transferase activity, ubiquitin-mediated proteolysis, and oxidative phosphorylation. The findings indicated a potentially significant association between global hypomethylation and breast cancer in Saudi patients. Our results revealed 81 differentially promoter-methylated and expressed genes. The most significant differentially methylated and expressed genes found in gene ontology (GO) are pumilio RNA binding family member 1 (PUM1) and zinc finger AN1-type containing 2B (ZFAND2B) also known as (AIRAPL). Conclusion: The essential outcomes of this study suggested that aberrant hypermethylation at crucial genes that have significant parts in the molecular pathways of breast cancer could be used as a potential prognostic biomarker for breast cancer.

6.
Front Nutr ; 10: 1125106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415912

RESUMO

Introduction: Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim: This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi, C. sinensis and M. arvensis, then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods: The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH.), and Nitric oxide (NO.) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results: The results showed that tested medicinal plants' polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia, C. absus, and C. sinensis, has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7-O-neohesperideside, quercetin 3,7-O-glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560-780 mg/L). At the same time, other compounds are of medium content (99-312 mg/L). The phenolics in C. sinensis were 20-116% more abundant than those in M. longifolia, C. absus, and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis, and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli, and S. enterica. Discussion: The principal component analysis demonstrated clear separation among medicinal plants' extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.

7.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298904

RESUMO

This study identified phytochemicals in Argemone mexicana (A. mexicana) extracts that are responsible for its medicinal properties, and the best solvent for their extraction. The extracts of the stem, leaves, flowers, and fruits of A. mexicana were prepared at low (corresponding to room temperature) and high temperatures (corresponding to the boiling points) in various solvents, viz., hexane, ethyl acetate, methanol, and H2O. The UV-visible absorption spectra of various phytoconstituents in the isolated extracts were determined through spectrophotometry. Qualitative tests for the screening of phytoconstituents in the extracts were performed to identify various phytochemicals. We identified the presence of terpenoids, alkaloids, cardiac glycosides, and carbohydrates in the plant extracts. The antioxidant and anti-human immunodeficiency virus type 1 reverse transcriptase (anti-HIV-1RT) potential, as well as the antibacterial activity of various A. mexicana extracts were determined. These extracts showed strong antioxidant activities. The extracts exhibited antimicrobial activities against Salmonella typhi, Staphylococcus epidermis, Citrobacter, Neisseria gonorrhoeae, and Shigella flexineri. These extracts significantly inhibited HIV-1 reverse transcriptase activity. The aqueous leaf extract prepared at a temperature equivalent to the boiling point, i.e., 100 °C, was identified to be the most active against pathogenic bacteria and HIV-1 RT.


Assuntos
Anti-Infecciosos , Argemone , Argemone/química , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Solventes , Compostos Fitoquímicos/química
8.
Foods ; 12(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37174295

RESUMO

Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.

9.
Front Microbiol ; 14: 1135806, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089535

RESUMO

Non-typhoidal Salmonella is the tremendously predominant source of acquired foodborne infection in humans, causing salmonellosis which is a global threat to the healthcare system. This threat is even worse when it is combined with the incidence of multidrug-resistant Salmonella strains. Bacteriophage therapy has been proposed as a promising potential candidate to control a diversity of foodborne infective bacteria. The objective of this study designed to isolate and characterize lytic phages infecting zoonotic multi-drug resistant and strong biofilm producer Salmonella enterica serovar Enteritidis EG.SmE1 and then apply the isolated phage/s as a biocontrol agent against infections in ready-to-eat food articles including milk, water, apple juice, and chicken breasts. One lytic phage (LPSent1) was selected based on its robust and stable lytic activity. Phage LPSent1 belonged to the genus Jerseyvirus within the Jerseyvirinae subfamily. The lysis time of phage LPSent1 was 60 min with a latent period of 30 min and each infected cell burst about 112 plaque-forming units. Phage LPSent1 showed a narrow host range. Furthermore, the LPSent1 genome did not encode any virulence or lysogenic genes. In addition, phage LPSent1 had wide pH tolerance, prolonged thermal stability, and was stable in food articles lacking its susceptible host for 48 h. In vitro applications of phage LPSent1 inhibited free planktonic cells and biofilms of Salmonella Enteritidis EG.SmE1 with a lower occurrence to form phage-resistant bacterial mutants which suggests promising applications on food articles. Application of phage LPSent1 at multiplicities of infections of 100 or 1000 showed significant inhibition in the bacterial count of Salmonella Enteritidis EG.SmE1 by 5 log10/sample in milk, water, apple juice, and chicken breasts at either 4°C or 25°C. Accordingly, taken together these findings establish phage LPSent1 as an effective, promising candidate for the biocontrol of MDR Salmonella Enteritidis in ready-to-eat food.

10.
Metabolites ; 13(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110206

RESUMO

Rodent models may help investigations on the possible link between autism spectrum disorder (ASD) and gut microbiota since autistic patients frequently manifested gastrointestinal troubles as co-morbidities. Thirty young male rats were divided into five groups: Group 1 serves as control; Group 2, bee pollen and probiotic-treated; and Group 3, propionic acid (PPA)-induced rodent model of autism; Group 4 and Group 5, the protective and therapeutic groups were given bee pollen and probiotic combination treatment either before or after the neurotoxic dose of PPA, respectively. Serum occludin, zonulin, lipid peroxides (MDA), glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, and gut microbial composition were assessed in all investigated groups. Recorded data clearly indicated the marked elevation in serum occludin (1.23 ± 0.15 ng/mL) and zonulin (1.91 ± 0.13 ng/mL) levels as potent biomarkers of leaky gut in the PPA- treated rats while both were normalized to bee pollen/probiotic-treated rats. Similarly, the high significant decrease in catalase (3.55 ± 0.34 U/dL), GSH (39.68 ± 3.72 µg/mL), GST (29.85 ± 2.18 U/mL), and GPX (13.39 ± 1.54 U/mL) concomitant with a highly significant increase in MDA (3.41 ± 0.12 µmoles/mL) as a marker of oxidative stress was also observed in PPA-treated animals. Interestingly, combined bee pollen/probiotic treatments demonstrated remarkable amelioration of the five studied oxidative stress variables as well as the fecal microbial composition. Overall, our findings demonstrated a new approach to the beneficial use of bee pollen and probiotic combination as a therapeutic intervention strategy to relieve neurotoxic effects of PPA, a short-chain fatty acid linked to the pathoetiology of autism.

11.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978364

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) poses a serious public health threat in multiple clinical settings. In this study, we detail the isolation of a lytic bacteriophage, vB_PseuP-SA22, from wastewater using a clinical strain of CRPA. Transmission electron microscopy (TEM) analysis identified that the phage had a podovirus morphology, which agreed with the results of whole genome sequencing. BLASTn search allowed us to classify vB_PseuP-SA22 into the genus Bruynoghevirus. The genome of vB_PseuP-SA22 consisted of 45,458 bp of double-stranded DNA, with a GC content of 52.5%. Of all the open reading frames (ORFs), only 26 (44.8%) were predicted to encode certain functional proteins, whereas the remaining 32 (55.2%) ORFs were annotated as sequences coding functionally uncharacterized hypothetical proteins. The genome lacked genes coding for toxins or markers of lysogenic phages, including integrases, repressors, recombinases, or excisionases. The phage produced round, halo plaques with a diameter of 1.5 ± 2.5 mm on the bacterial lawn. The TEM revealed that vB_PseuP-SA22 has an icosahedral head of 57.5 ± 4.5 nm in length and a short, non-contractile tail (19.5 ± 1.4 nm). The phage showed a latent period of 30 min, a burst size of 300 PFU/infected cells, and a broad host range. vB_PseuP-SA22 was found to be stable between 4-60 °C for 1 h, while the viability of the virus was reduced at temperatures above 60 °C. The phage showed stability at pH levels between 5 and 11. vB_PauP-SA22 reduced the number of live bacteria in P. aeruginosa biofilm by almost five logs. The overall results indicated that the isolated phage could be a candidate to control CRPA infections. However, experimental in vivo studies are essential to ensure the safety and efficacy of vB_PauP-SA22 before its use in humans.

12.
Microorganisms ; 11(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985326

RESUMO

The consumer demand for fresh produce (vegetables and fruits) has considerably increased since the 1980s for more nutritious foods and healthier life practices, particularly in developed countries. Currently, several foodborne outbreaks have been linked to fresh produce. The global rise in fresh produce associated with human infections may be due to the use of wastewater or any contaminated water for the cultivation of fruits and vegetables, the firm attachment of the foodborne pathogens on the plant surface, and the internalization of these agents deep inside the tissue of the plant, poor disinfection practices and human consumption of raw fresh produce. Several investigations have been established related to the human microbial pathogens (HMPs) interaction, their internalization, and survival on/within plant tissue. Previous studies have displayed that HMPs are comprised of several cellular constituents to attach and adapt to the plant's intracellular niches. In addition, there are several plant-associated factors, such as surface morphology, nutrient content, and plant-HMP interactions, that determine the internalization and subsequent transmission to humans. Based on documented findings, the internalized HMPs are not susceptible to sanitation or decontaminants applied on the surface of the fresh produce. Therefore, the contamination of fresh produce by HMPs could pose significant food safety hazards. This review provides a comprehensive overview of the interaction between fresh produce and HMPs and reveals the ambiguity of interaction and transmission of the agents to humans.

13.
Biotechnol Genet Eng Rev ; : 1-29, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927397

RESUMO

Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.

14.
Life (Basel) ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36836860

RESUMO

Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.

15.
Antibiotics (Basel) ; 12(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36830292

RESUMO

Bacteria and their predators, bacteriophages, or phages are continuously engaged in an arms race for their survival using various defense strategies. Several studies indicated that the bacterial immune arsenal towards phage is quite diverse and uses different components of the host machinery. Most studied antiphage systems are associated with phages, whose genomic matter is double-stranded-DNA. These defense mechanisms are mainly related to either the host or phage-derived proteins and other associated structures and biomolecules. Some of these strategies include DNA restriction-modification (R-M), spontaneous mutations, blocking of phage receptors, production of competitive inhibitors and extracellular matrix which prevent the entry of phage DNA into the host cytoplasm, assembly interference, abortive infection, toxin-antitoxin systems, bacterial retrons, and secondary metabolite-based replication interference. On the contrary, phages develop anti-phage resistance defense mechanisms in consortium with each of these bacterial phage resistance strategies with small fitness cost. These mechanisms allow phages to undergo their replication safely inside their bacterial host's cytoplasm and be able to produce viable, competent, and immunologically endured progeny virions for the next generation. In this review, we highlight the major bacterial defense systems developed against their predators and some of the phage counterstrategies and suggest potential research directions.

16.
Heliyon ; 9(1): e13077, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36747932

RESUMO

Foodborne infections caused by Salmonella spp. are among the most common foodborne diseases in the world. We isolated a lytic phage against extended-spectrum beta-lactam producing S. Enteritidis strain PT1 derived from chicken carcass. Results from electronmicrography indicated that phiPT1 belonged to the family, Siphoviridae, in the order, Caudovirales. Phage phiPT1 was stable at temperatures from 4 °C to 60 °C and inactivated at 90 °C. phiPT1 retained a high titer from pH 4 to pH 10 for at least 1 h. Nevertheless, it displayed a significant decrease (p < 0.05) in titer at pH 11 and 12, with phage titers of 5.5 and 2.4 log10 PFU/mL, respectively. The latent time and burst size of phiPT1 were estimated to be 30 min and 252 PFU/infected cell, respectively. The virulence of phage phiPT1 was evaluated against S. Enteritidis strain PT1 at different MOIs. phiPT1 reduced Salmonella proliferation relative to the negative control (MOI 0) at all MOIs (P < 0.05). However, there is no significant difference among the MOIs (P > 0.05). The phage-antibiotic combination analysis (PAS) indicated that synergism was not detected at higher phiPT1 titer (1012 PFU/mL) with all tested antibiotics at all subinhibitory concentrations. However, synergistic activities were recorded at 0.25 × MIC of four tested antibiotics: cefixime, gentamicin, ciprofloxacin, and aztreonam in combination with phage at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism was detected for all antibiotics (0.1 × MIC) except meropenem and colistin in combination with phiPT1 at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism also displayed at the lowest concentrations of all antibiotics (0.01 MIC) in combination with phiPT1 at all titers except 1012 PFU/mL. Such characteristic features make phiPT1 to be a potential candidate for therapeutic uses.

17.
Pathogens ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36558814

RESUMO

Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Enteritidis are well-known pathogens that cause foodborne diseases in humans. The emergence of antibiotic-resistant Salmonella serovars has caused serious public health problems worldwide. In this study, two lysogenic phages, STP11 and SEP13, were isolated from a wastewater treatment plant in Jeddah, KSA. Transmission electron microscopic images revealed that both phages are new members of the genus "Chivirus" within the family Siphoviridae. Both STP11 and SEP13 had a lysis time of 90 min with burst sizes of 176 and 170 PFU/cell, respectively. The two phages were thermostable (0 °C ≤ temperature < 70 °C) and pH tolerant at 3 ≤ pH < 11. STP11 showed lytic activity for approximately 42.8% (n = 6), while SEP13 showed against 35.7% (n = 5) of the tested bacterial strains. STP11 and STP13 have linear dsDNA genomes consisting of 58,890 bp and 58,893 bp nucleotide sequences with G + C contents of 57% and 56.5%, respectively. Bioinformatics analysis revealed that the genomes of phages STP11 and SEP13 contained 70 and 71 ORFs, respectively. No gene encoding tRNA was detected in their genome. Of the 70 putative ORFs of phage STP11, 27 (38.6%) were assigned to functional genes and 43 (61.4%) were annotated as hypothetical proteins. Similarly, 29 (40.8%) of the 71 putative ORFs of phage SEP13 were annotated as functional genes, whereas the remaining 42 (59.2%) were assigned as nonfunctional proteins. Phylogenetic analysis of the whole genome sequence demonstrated that the isolated phages are closely related to Chi-like Salmonella viruses.

18.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557867

RESUMO

Biodiesel is one of the important biofuels as an alternative to petroleum-based diesel fuels. In the current study, enzymatic transesterification reaction was carried out for the production of biodiesel from waste cooking oil (WCO) and experimental conditions were optimized, in order to reach maximum biodiesel yield. Bacillus stearothermophilus and Staphylococcus aureus lipase enzymes were individually immobilized on CaCO3 to be used as environmentally friendly catalysts for biodiesel production. The immobilized lipases exhibited better stability than free ones and were almost fully active after 60 days of storage at 4 °C. A significant biodiesel yield of 97.66 ± 0.57% was achieved without any pre-treatment and at 1:6 oil/methanol molar ratio, 1% of the enzyme mixture (a 1:1 ratio mixture of both lipase), 1% water content, after 24 h at 55 °C reaction temperature. The biocatalysts retained 93% of their initial activities after six cycles. The fuel and chemical properties such as the cloud point, viscosity at 40 °C and density at 15 °C of the produced biodiesel complied with international specifications (EN 14214) and, therefore, were comparable to those of other diesels/biodiesels. Interestingly, the resulting biodiesel revealed a linolenic methyl ester content of 0.55 ± 0.02% and an ester content of 97.7 ± 0.21% which is in good agreement with EN14214 requirements. Overall, using mixed CaCO3-immobilized lipases to obtain an environmentally friendly biodiesel from WCO is a promising and effective alternative for biodiesel production catalysis.


Assuntos
Biocombustíveis , Ésteres , Biocombustíveis/análise , Esterificação , Lipase/química , Enzimas Imobilizadas/metabolismo , Culinária , Óleos de Plantas
19.
Bioengineering (Basel) ; 9(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36550941

RESUMO

Valorizing the wastes of the food industry sector as additives in foods and beverages enhances human health and preserves the environment. In this study, pomegranate pomace (PP) was obtained from the company Schweppes and exposed to the production of polyphenols and fiber-enriched fractions, which were subsequently included in a strawberry-yogurt smoothie (SYS). The PP is rich in carbohydrates and fibers and has high water-absorption capacity (WAC) and oil-absorption capacity (OAC) values. The LC/MS phenolic profile of the PP extract indicated that punicalagin (199 g/L) was the main compound, followed by granatin B (60 g/L) and pedunculagin A (52 g/L). Because of the high phenolic content of PP extract, it (p ≤ 0.05) has high antioxidant activity with SC50 of 200 µg/mL, besides scavenging 95% of DPPH radicals compared to ascorbic acid (92%); consequently, it reduced lung cancer cell lines' viability to 86%, and increased caspase-3 activity. Additionally, it inhibited the growth of pathogenic bacteria and fungi i.e., L. monocytogenes, P. aeruginosa, K. pneumonia, A. niger, and C. glabrata, in the 45-160 µg/mL concentration range while killing the tested isolates with 80-290 µg/mL concentrations. These isolates were selected based on the microbial count of spoiled smoothie samples and were identified at the gene level by 16S rRNA gene sequence analysis. The interaction between Spike and ACE2 was inhibited by 75.6%. The PP extract at four levels (0.4, 0.8, 1.2, and 1.4 mg/mL) was added to strawberry-yogurt smoothie formulations. During 2 months storage at 4 °C, the pH values, vitamin C, and total sugars of all SYS decreased. However, the decreases were gradually mitigated in PP-SYS because of the high phenolic content in the PP extract compared to the control. The PP-SYS3 and PP-SYS4 scored higher in flavor, color, and texture than in other samples. In contrast, acidity, fat, and total soluble solids (TSS) increased at the end of the storage period. High fat and TSS content are observed in PP-SYS because of the high fiber content in PP. The PP extract (1.2 and 1.6 mg/mL) decreases the color differences and reduces harmful microbes in PP-SYS compared to the control. Using pomegranate pomace as a source of polyphenols and fiber in functional foods enhances SYS's physiochemical and sensory qualities.

20.
Microb Pathog ; 173(Pt A): 105838, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36336132

RESUMO

Urinary tract infection is among the greatest prevalent infections, and it is also one of the most challenging diseases to treat because there are germs that are resistant to several drugs. Antibiotics are typically provided as the treatment; however, there is a disparity in the type of antibiotic that was being prescribed, the amount of the dosage, and the length of time that patients were required to take antibiotics, which led to the creation of multidrug-resistant infections. The objective of this research is to prescribe Fosfomycin treatment for the infection brought by the Escherichia coli bacterium and to determine whether or not it is effective. Throughout the course of this research, the antimicrobial drugs fosfomycin were factored in the equation at various points. The patients who had exhibited symptoms of urinary tract infection provided their urine for the purpose of giving a sample for the studies, which were carried out on them. The results of these studies showed that there were Fosfomycin antimicrobials that were successful in disrupting the E. coli bacteria, and the least inhibitory concentration (MIC) required for the pathogen to be vulnerable was quite low. In addition, administration of fosfomycin intravenously considerably lowers both the bacterial load and the inflammatory infiltration in the kidney and bladder, which helps to preserve the structural integrity of the kidney.


Assuntos
Infecções por Escherichia coli , Fosfomicina , Infecções Urinárias , Humanos , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Escherichia coli , beta-Lactamases , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Necrose/tratamento farmacológico , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA